Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Environ Microbiol ; 25(2): 548-561, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36478509

RESUMO

In this study, we hypothesized that shifts in the kinetic parameters of extracellular hydrolytic enzymes may occur as a consequence of seasonal environmental disturbances and would reflect the level of adaptation of the bacterial community to the organic matter of the ecosystem. We measured the activities of enzymes that play a key role in the bacterial growth (leucine aminopeptidase, ß- and α-glucosidases) in surface coastal waters of the Eastern Cantabrian Sea and determined their kinetic parameters by computing kinetic models of distinct complexity. Our results revealed the existence of two clearly distinct enzymatic systems operating at different substrate concentrations: a high-affinity system prevailing at low substrate concentrations and a low-affinity system characteristic of high substrate concentrations. These findings could be the result of distinct functional bacterial assemblages growing concurrently under sharp gradients of high-molecular-weight compounds. We constructed an ecological network based on contemporaneous and time-delayed correlations to explore the associations between the kinetic parameters and the environmental variables. The analysis revealed that the recurring phytoplankton blooms registered throughout the seasonal cycle trigger the wax and wane of those members of the bacterial community able to synthesize and secrete specific enzymes.


Assuntos
Ecossistema , Microbiota , Hidrolases , Água do Mar/microbiologia , Bactérias/genética , Fitoplâncton
2.
Front Microbiol ; 11: 918, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32582044

RESUMO

Prokaryotes play a fundamental role in decomposing organic matter in the ocean, but little is known about how microbial metabolic capabilities vary at the global ocean scale and what are the drivers causing this variation. We aimed at obtaining the first global exploration of the functional capabilities of prokaryotes in the ocean, with emphasis on the under-sampled meso- and bathypelagic layers. We explored the potential utilization of 95 carbon sources with Biolog GN2 plates® in 441 prokaryotic communities sampled from surface to bathypelagic waters (down to 4,000 m) at 111 stations distributed across the tropical and subtropical Atlantic, Indian, and Pacific oceans. The resulting metabolic profiles were compared with biological and physico-chemical properties such as fluorescent dissolved organic matter (DOM) or temperature. The relative use of the individual substrates was remarkably consistent across oceanic regions and layers, and only the Equatorial Pacific Ocean showed a different metabolic structure. When grouping substrates by categories, we observed some vertical variations, such as an increased relative utilization of polymers in bathypelagic layers or a higher relative use of P-compounds or amino acids in the surface ocean. The increased relative use of polymers with depth, together with the increases in humic DOM, suggest that deep ocean communities have the capability to process complex DOM. Overall, the main identified driver of the metabolic structure of ocean prokaryotic communities was temperature. Our results represent the first global depiction of the potential use of a variety of carbon sources by prokaryotic communities across the tropical and the subtropical ocean and show that acetic acid clearly emerges as one of the most widely potentially used carbon sources in the ocean.

3.
Environ Microbiol ; 22(1): 369-380, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31713276

RESUMO

The microbial response to environmental changes in coastal waters of the eastern Cantabrian Sea was explored for four years by analysing a broad set of environmental variables along with bacterial community metabolism and composition. A recurrent seasonal cycle emerged, consisting of two stable periods, characterized by low bacterial metabolic activity (winter) from October to March, and high bacterial metabolic activity (summer) from May to August. These two contrasting periods were linked by short transition periods in April (TA ) and September (TS ). The phylogenetic groups Alphaproteobacteria and Bacteroidetes were dominant during winter and summer respectively, and their recurrent alternation was mainly driven by the bloom of eukaryotic phytoplankton before TA and the bloom of prokaryotic phytoplankton before TS . Bacterial growth efficiency remained high and stable during the winter and summer periods but dropped during the two short transition periods. Our results suggest that bacterial growth efficiency should be considered a very resilient property that reflects different stages in the adaptation of the bacterial community composition to the environmental changes occurring throughout the seasonal cycle in this coastal ecosystem.


Assuntos
Bactérias , Fitoplâncton/classificação , Água do Mar/microbiologia , Alphaproteobacteria/isolamento & purificação , Oceano Atlântico , Bactérias/classificação , Bactérias/crescimento & desenvolvimento , Bactérias/metabolismo , Bacteroidetes/isolamento & purificação , Ecossistema , Eucariotos/classificação , Eucariotos/crescimento & desenvolvimento , Eucariotos/metabolismo , França , Microbiota/fisiologia , Filogenia , Estações do Ano , Espanha
4.
Glob Chang Biol ; 23(10): 4084-4093, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28593723

RESUMO

Ocean oligotrophication concurrent with warming weakens the capacity of marine primary producers to support marine food webs and act as a CO2 sink, and is believed to result from reduced nutrient inputs associated to the stabilization of the thermocline. However, nutrient supply in the oligotrophic ocean is largely dependent on the recycling of organic matter. This involves hydrolytic processes catalyzed by extracellular enzymes released by bacteria, which temperature dependence has not yet been evaluated. Here, we report a global assessment of the temperature-sensitivity, as represented by the activation energies (Ea ), of extracellular ß-glucosidase (ßG), leucine aminopeptidase (LAP) and alkaline phosphatase (AP) enzymatic activities, which enable the uptake by bacteria of substrates rich in carbon, nitrogen, and phosphorus, respectively. These Ea were calculated from two different approaches, temperature experimental manipulations and a space-for-time substitution approach, which generated congruent results. The three activities showed contrasting Ea in the subtropical and tropical ocean, with ßG increasing the fastest with warming, followed by LAP, while AP showed the smallest increase. The estimated activation energies predict that the hydrolysis products under projected warming scenarios will have higher C:N, C:P and N:P molar ratios than those currently generated, and suggest that the warming of oceanic surface waters leads to a decline in the nutrient supply to the microbial heterotrophic community relative to that of carbon, particularly so for phosphorus, slowing down nutrient recycling and contributing to further ocean oligotrophication.


Assuntos
Oceanos e Mares , Fósforo , Temperatura , Bactérias , Processos Heterotróficos , Microbiologia da Água
5.
Environ Microbiol ; 16(2): 498-511, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24131478

RESUMO

We explored how marine dissolved organic matter (DOM) altered by bacterial growth and protozoan grazing modify the metabolism of Southeastern Cantabrian Sea (CS) and NW Mediterranean Sea (MS) coastal bacterial communities. Major metabolic features were measured in treatments with half of the natural water replaced by water with different DOM quality, characterized by fluorescent DOM analysis and collected from key times of the predator-prey curve. In both ecosystems, protozoan-altered DOM led to similar increases in bacterial carbon demand (238% and 213%) and decreases in bacterial growth efficiency (BGE: 56% for the CS and 46% for the MS). These low BGEs were caused by similar bacterial production but much higher bacterial respiration rates, which in turn were positively related to aminopeptidase activity. However, in the CS bacterial community dominated by Bacteroidetes (41%), the enhanced hydrolytic activity was produced at a lower metabolic cost than in the MS, dominated by SAR11 (47%), which suggests a better adaptation of Bacteroidetes to the DOM altered during protozoan grazing. These results highlight protozoan grazing as a relevant factor influencing BGE in coastal ecosystems, and relate bacterial community composition to the major metabolic processes that result after a change in the quality of marine DOM.


Assuntos
Bactérias/metabolismo , Cadeia Alimentar , Compostos Orgânicos/análise , Microbiologia da Água , Bactérias/crescimento & desenvolvimento , Carbono/metabolismo , Oceanos e Mares , Água do Mar/química
6.
Int Microbiol ; 13(3): 151-8, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20890849

RESUMO

This study investigated the generation of dissolved free amino acids (DFAA) by the bacterivorous flagellate Rhynchomonas nasuta when feeding on abundant prey. Specifically, it examined whether this flagellate protist exhibits a chemosensory response towards those amino acids. The concentrations of glycine and the L- and D-enantiomers of glutamate, serine, threonine, alanine, and leucine were determined in co-cultures of the flagellate and bacteria. Glycine, L- and D-alanine, and L-serine were found to accumulate under these conditions in amounts that correlated positively with flagellate abundance, suggesting that protists are involved in their generation. Investigations of the chemotactic response of young and old foraging protists to the same amino acids, offered in concentrations similar to those previously generated, showed that glycine elicited the strongest attraction in both age groups. Young protists were strongly attracted to all the assayed amino acids, whereas older protists maintained a high level of attraction only for glycine. These results suggest that glycine generated by protists actively grazing in bacterially enriched patches functions as an infochemical, signaling to foraging protists the presence of available prey in the aquatic environment.


Assuntos
Aminoácidos/metabolismo , Quimiotaxia , Kinetoplastida/fisiologia , Bactérias/crescimento & desenvolvimento , Kinetoplastida/crescimento & desenvolvimento , Kinetoplastida/metabolismo
7.
Int. microbiol ; 13(3): 151-158, sept. 2010. graf, tab
Artigo em Inglês | IBECS | ID: ibc-84639

RESUMO

This study investigated the generation of dissolved free amino acids (DFAA) by the bacterivorous flagellate Rhynchomonas nasuta when feeding on abundant prey. Specifically, it examined whether this flagellate protist exhibits a chemosensory response towards those amino acids. The concentrations of glycine and the L- and D-enantiomers of glutamate, serine, threonine, alanine, and leucine were determined in co-cultures of the flagellate and bacteria. Glycine, L- and D-alanine, and L-serine were found to accumulate under these conditions in amounts that correlated positively with flagellate abundance, suggesting that protists are involved in their generation. Investigations of the chemotactic response of young and old foraging protists to the same amino acids, offered in concentrations similar to those previously generated, showed that glycine elicited the strongest attraction in both age groups. Young protists were strongly attracted to all the assayed amino acids, whereas older protists maintained a high level of attraction only for glycine. These results suggest that glycine generated by protists actively grazing in bacterially enriched patches functions as an infochemical, signaling to foraging protists the presence of available prey in the aquatic environment (AU)


No disponible


Assuntos
Aminoácidos/metabolismo , Quimiotaxia , Kinetoplastida/crescimento & desenvolvimento , Kinetoplastida/metabolismo , Bactérias/crescimento & desenvolvimento , Kinetoplastida/fisiologia
8.
J Eukaryot Microbiol ; 56(2): 188-93, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-21462552

RESUMO

To enhance our understanding of the factors affecting feeding selectivity of bacterivorous protists in aquatic systems, we examined the preference responses of the freshwater ciliate Uronema nigricans towards three bacterial prey taxa, Pseudomonas luteola, Serratia rubidaea, and Aeromonas hydrophila. Potential factors influencing the predator-prey contact rate included the previous feeding history of the ciliate and physiological state of bacteria. Preference indexes were obtained from multiple-choice mazes in which ciliates moved preferentially towards alternative bacteria or the prey species on which they had been feeding. Uronema nigricans showed differential attraction towards the offered prey types, and these preferences varied as a function of the ciliate feeding history: U. nigricans growing on P. luteola showed lower preference responses towards the offered bacteria than U. nigricans growing on S. rubidaea. The bacteria in stationary phase elicited a higher degree of attraction than bacteria in exponential phase, probably due to a higher concentration of carbohydrates in the former. Therefore, this protist will preferentially swim towards bacteria in stationary growth phase, although the degree of this response will be affected by the recent feeding history of the ciliate.


Assuntos
Oligoimenóforos/fisiologia , Aeromonas hydrophila/fisiologia , Quimiotaxia , Comportamento Alimentar , Pseudomonas/fisiologia , Serratia/fisiologia
9.
Int Microbiol ; 10(1): 13-8, 2007 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17407056

RESUMO

The kinetics of glucose and leucine uptake in attached and free-living prokaryotes in two types of microcosms with different nutrient qualities were compared. Microcosm type M1, derived from unaltered seawater, and microcosm type M2, from phytoplankton cultures, clearly expressed different kinetic parameters (Vmax/cell and K' m). In aggregates with low cell densities (M1 microcosm), the attached prokaryotes benefited from attachment as reflected in the higher potential uptake rates, while in aggregates with high cell densities (M2 microcosm) differences in the potential uptake rates of attached and free-living prokaryotes were not evident. The aging process and the chemical changes in aggregates of M2 microcosms were followed for 15-20 days. The results showed that as the aggregates aged and prokaryotic abundance increased, attached prokaryotes decreased their potential uptake rate and their K' m for substrate. This suggests an adaptive response by attached prokaryotes when aggregates undergo quantitative and qualitative impoverishment.


Assuntos
Glucose/farmacocinética , Leucina/farmacocinética , Células Procarióticas/metabolismo , Microbiologia da Água , Agregação Celular/fisiologia , Diatomáceas/metabolismo , Cinética , Fitoplâncton/metabolismo
10.
Int. microbiol ; 10(1): 13-18, mar. 2007. ilus, tab
Artigo em En | IBECS | ID: ibc-054983

RESUMO

The kinetics of glucose and leucine uptake in attached and free-living prokaryotes in two types of microcosms with different nutrient qualities were compared. Microcosm type M1, derived from unaltered seawater, and microcosm type M2, from phytoplankton cultures, clearly expressed different kinetic parameters (Vmax/cell and K’ m). In aggregates with low cell densities (M1 microcosm), the attached prokaryotes benefited from attachment as reflected in the higher potential uptake rates, while in aggregates with high cell densities (M2 microcosm) differences in the potential uptake rates of attached and free-living prokaryotes were not evident. The aging process and the chemical changes in aggregates of M2 microcosms were followed for 15-20 days. The results showed that as the aggregates aged and prokaryotic abundance increased, attached prokaryotes decreased their potential uptake rate and their K’ m for substrate. This suggests an adaptive response by attached prokaryotes when aggregates undergo quantitative and qualitative impoverishment (AU)


No disponible


Assuntos
Células Procarióticas/imunologia , Fauna Marinha , Glucose/metabolismo , Leucina/metabolismo , Substratos para Tratamento Biológico
11.
Syst Appl Microbiol ; 25(1): 100-8, 2002 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-12086176

RESUMO

A flow cytometric protocol to detect and enumerate heterotrophic nanoflagellates (HNF) in enriched waters is reported. At present, the cytometric protocols that allow accurate quantification of bacterioplankton cannot be used to quantify protozoa for the following reasons: i) the background produced by the bacterial acquisitions does not allow the discrimination of protozoa at low abundance, ii) since the final protozoan fluorescence is much higher than the bacterioplankton fluorescence (more than 35 fold) the protozoa acquisitions lie outside the range. With an increase in the fluorescence threshold and a reduction of the fluorescence detector voltage, low fluorescence particles (bacteria) are beneath the detection limits and only higher fluorescence particles (most of them heterotrophic nanoflagellates) are detected. The main limitation for the application of the cytometric protocol developed is that a ratio of bacteria/HNF below 1000 is needed. At higher ratios, the background of larger cells of bacterioplankton makes it difficult to discriminate protozoa. The proposed protocol has been validated by epifluorescence microscopy analyzing both a mixed community and two single species of HFN: Rhynchomonas nasuta and Jakoba libera. Taking into account the required bacteria/HNF ratio cited above, the results provide evidence that the flow cytometric protocol reported here is valid for counting mixed communities of HNF in enriched seawater and in experimental micro or mesocosms. In the case of single species of HNF previous knowledge of the biological characteristics of the protist and how they can affect the effectiveness of the flow cytometric count is necessary.


Assuntos
Eucariotos/isolamento & purificação , Citometria de Fluxo/métodos , Água do Mar , Microbiologia da Água , Animais , Bactérias/crescimento & desenvolvimento , Bactérias/isolamento & purificação , Células Cultivadas , Fluorescência , Kinetoplastida/isolamento & purificação , Zooplâncton/crescimento & desenvolvimento , Zooplâncton/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...